A relation pairs input values \((x)\) and output values \((y)\).

Domain
Set of input values or \(x\)-coordinates

Range
Set of output values or \(y\)-coordinates

List domain and range elements from least to greatest.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>56</td>
<td>82</td>
<td>95</td>
<td>136</td>
<td>212</td>
</tr>
</tbody>
</table>

Range: \{56, 82, 95, 136, 212\} Set of \(y\)-coordinates

The domain of a set of ordered pairs is the \(x\)-coordinates. The range is the \(y\)-coordinates. Each value is listed only once.

For the graph at right:

Domain: \{-4, -2, 0, 2, 4\}; Range: \{0, 2, 3\}

Give the domain and range for each relation.

1. **Concert Ticket Price**

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price ($)</td>
<td>25</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>46</td>
</tr>
</tbody>
</table>

Domain: \{2001, \dots\} Range: \{25, \dots\}

2. Domain: \{-4, \dots\}

Range: \{-2, \dots\}
A function is a special type of relation. A function has only one output for each input.

Use the vertical-line test to decide whether a relation is a function.

Draw a vertical line. The line passes through no more than one point on the graph. This is a function.

Draw a vertical line. The line passes through two points on the graph, at (1, -1) and (1, 1). This is not a function.

Use the vertical-line test to determine whether each relation is a function. If not, identify two points a vertical line would pass through.

3. (Graph of a relation shown)

4. (Graph of a relation shown)
Practice A

1.1 Relations and Functions

Complete each sentence to make a true statement.

1. The domain of a relation corresponds to the __________ values in the ordered pairs.
2. The range of a relation corresponds to the __________ values in the ordered pairs.

Give the domain and range for each relation.

3. Daily CD Sales
 - **Day**: Mon, Tue, Wed, Thu, Fri
 - **Sales**: 287, 365, 128, 262, 649
 - **Domain**: (Mon, Tue, Wed, Thu, Fri)
 - **Range**: (287, 365, 128, 262, 649)

 This is a function.

4. Temperature Chart
 - **Month**: Jun, Jul, Aug, Sep
 - **Temperature**: 80°, 85°, 88°, 93°
 - **Domain**: (Jun, Jul, Aug, Sep)
 - **Range**: (80°, 85°, 88°, 93°)

 This is not a function.

5. Polynomial Function
 - **Function**: f(x) = 2x^2 + 3x + 1
 - **Domain**: (−3, −2, 0, 2, 4)
 - **Range**: (−3, −2, 0, 2, 4)

 This is a function.

Practice B

1.1 Relations and Functions

Give the domain and range for each relation. Then determine whether each relation is a function.

1. **Average High Temperatures**
 - **Month**: Jun, Jul, Aug, Sep
 - **Temperature**: 80°, 85°, 88°, 93°
 - **Domain**: (Jun, Jul, Aug, Sep)
 - **Range**: (80°, 85°, 88°, 93°)

 This is a function.

2. **This is not a function.**

Practice C

1.1 Relations and Functions

Give the domain and range of each relation and make a mapping diagram.

1. **Basketball Scoring Record**
 - **Game**: 1, 2, 3
 - **Points Scored**: 37, 44, 38
 - **Domain**: (1, 2, 3)
 - **Range**: (37, 44, 38)

 This is a function.

2. **Sydney’s Avatar Values**
 - **Avatar**: A, B, C
 - **Values**: 64, 293, 19
 - **Domain**: (A, B, C)
 - **Range**: (64, 293, 19)

 This is not a function.

1.5 Reaching for the Stars

List domain and range elements from least to greatest.

1. **Soccer Registration**
 - **Number of Players**: 56, 82, 85, 126, 212
 - **Range**: (56, 82, 85, 126, 212)

 The domain is already in order.

2. **Concert Ticket Prices**
 - **Price (dollars)**: 25, 30, 35, 42, 46
 - **Range**: (25, 30, 35, 42, 46)

 The domain is already in order.
Reteach

16 Relations and Functions (continued)

A function is a special type of relation. A function has only one output for each input. Use the vertical-line test to determine whether a relation is a function.

Draw a vertical line. The line passes through no more than one point on the graph. This is a function.

Draw a vertical line. The line passes through two points on the graph. It is not a function.

Use the vertical-line test to determine whether each relation is a function. If not, identify two points a vertical line would pass through.

1.

2.

3.

4.

Problem Solving

16 Relations and Functions

In order to make a nutrition plan, Richard wants to compare different types of milk. Use the table for Exercises 1–3.

Milk Facts (1 cup)

<table>
<thead>
<tr>
<th>Type</th>
<th>Calories</th>
<th>Carbohydrates (g)</th>
<th>Saturated Fat (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole Milk</td>
<td>146</td>
<td>11</td>
<td>4.4</td>
</tr>
<tr>
<td>2% Milk</td>
<td>122</td>
<td>11.4</td>
<td>3.1</td>
</tr>
<tr>
<td>1% Milk</td>
<td>132</td>
<td>12.2</td>
<td>1.5</td>
</tr>
<tr>
<td>Skim Milk</td>
<td>93</td>
<td>12.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

1. Is the relation from calories to saturated fat a function? Explain why or why not.

Yes; each calorie value has only one fat value.

2. Is the relation from calories to carbohydrates a function? Explain why or why not.

Yes; each calorie value has only one carbohydrate value.

3. Is the relation from carbohydrates to calories a function? Explain why or why not.

No; the carbohydrate value 12.2 has two calorie values, 102 and 83.

Choose the letter for the best answer.

4. Richard is drawing graphs of some of the relations from the table above. Which of these graphs fails the vertical-line test if he graphs the data as follows?

A column B along the y-axis, column C along the x-axis
B column D along the y-axis, column B along the x-axis
C column D along the y-axis, column C along the y-axis
D column C along the x-axis, column B along the y-axis

5. For the function (B, D) that relates calories to saturated fat, which column shows the domain?

A column A
B column B
C column C
D column D

6. Which column shows the range of the function that relates the type of milk to the number of calories?

A column A
B column B
C column C
D column D

7. Richard makes a mapping diagram from each type of milk to the number of students in his class of 25 who prefer that type of milk. Which is the best statement about this diagram?

A It is a relation, but not a function.
B It is a function, but not a relation.
C It is a function and a relation.
D It is not a relation or a function.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Holt Algebra 2

Challenge

17. Relating Relations

A relation is said to be reflexive if for every element r in the relation, the ordered pair (r, r) is in the relation. For example, if R is an element in a relation, then the relation is reflexive if the ordered pair (3, 3) is in the relation.

A relation is said to be symmetric if whenever the ordered pair (r, s) is in the relation, then (s, r) is also in the relation. For example, if (5, 6) is an ordered pair in a relation, then the relation is symmetric if the ordered pair (6, 5) is in the relation.

A relation is said to be transitive if whenever the ordered pairs (r, s) and (s, t) are in the relation, then the ordered pair (r, t) is in the relation. For example, if (3, 7) and (7, 12) are ordered pairs in a relation, then the relation is transitive if the ordered pair (3, 12) is in the relation.

Any relation that has all 3 properties is called an equivalence relation.

The following relations are described in words. Use these relations for Exercises 1–4.

V: a set of ordered pairs such that each first element is a factor of each second element, and every element in the relation is a whole number.
W: a set of ordered pairs such that each first element is congruent to each second element, and every element in the relation is a geometric figure.
X: a set of ordered pairs such that each first element is a multiple of each second element, and every element in the relation is a whole number.
Y: a set of ordered pairs such that each first element is greater than each second element, and every element in the relation is a geometric figure.

1. Which of the relations are reflexive? Explain why the other relations are not reflexive.

V, W, X, Z; (3, 3) does not exist because 3 is not greater than 3.

2. Which of the relations are symmetric? Explain why the other relations are not symmetric.

W, Z, V: 10 is a factor of 20, but 20 is not a factor of 10; X is a multiple of 4 but 4 is not a multiple of 8; Y: 3 > 2 but 3 is not greater than 3.

3. Which of the relations are transitive? Explain why the other relations are not transitive.

V, W, X, Z

4. Which, if any, of the relations are equivalence relations?

V, W

Reading Strategies

18. Read a Table

A function is a relation in which the input is never repeated. A relation is a pairing of 2 sets of numbers, such as pairing a year with the number of students enrolled in school. Use a table to help you determine if a relation is a function.

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>396</td>
</tr>
<tr>
<td>2001</td>
<td>372</td>
</tr>
<tr>
<td>2002</td>
<td>422</td>
</tr>
<tr>
<td>2003</td>
<td>455</td>
</tr>
</tbody>
</table>

The domain is the set of input values. The range is the set of y values.

1. What is the domain of the relation? How do you know?
2. What is the range of the relation? How do you know?
3. Is the relation a function? Explain.

The relation is a function because no input values are repeated.

12/27/05 2:51:04 PM