Chapter 2

The Copernican Revolution
Units of Chapter 2

2.1 Ancient Astronomy

2.2 The Geocentric Universe

2.3 The Heliocentric Model of the Solar System

Discovery 2-1 The Foundations of the Copernican Revolution

2.4 The Birth of Modern Astronomy
2.5 The Laws of Planetary Motion

More Precisely 2-1 Some Properties of Planetary Orbits

2.6 The Dimensions of the Solar System

2.7 Newton’s Laws

2.8 Newtonian Mechanics

More Precisely 2-2 Weighing the Sun
2.1 Ancient Astronomy

- Ancient civilizations observed the skies
- Many built structures to mark astronomical events

Summer solstice sunrise at Stonehenge:
2.1 Ancient Astronomy

Spokes of the **Big Horn Medicine Wheel** are aligned with the rising and setting of the Sun and other stars.
This temple at Caracol, in Mexico, has many windows that are aligned with astronomical events.
Ancient astronomers observed:

Sun
Moon
Stars

Five planets: Mercury, Venus, Mars, Jupiter, Saturn
2.2 The Geocentric Universe

Sun, Moon, and stars all have simple movements in the sky

Planets:

- Move with respect to fixed stars
- Change in brightness
- Change speed
- Undergo retrograde motion

Motions of the planets relative to the stars produce continuous streaks on a planetarium “sky.”
2.2 The Geocentric Universe

- **Inferior planets**: Mercury, Venus
- **Superior planets**: Mars, Jupiter, Saturn

Now know:

Inferior planets have orbits closer to Sun than Earth’s

Superior planets’ orbits are farther away
Early observations:

- Inferior planets never too far from Sun
- Superior planets not tied to Sun; exhibit retrograde motion
- Superior planets brightest at opposition
- Inferior planets brightest near inferior conjunction
2.2 The Geocentric Universe

Earliest models had Earth at center of solar system

Needed lots of complications to accurately track planetary motions

epicycle (used to explain planetary motions) = Ptolemy’s theory
2.3 The Heliocentric Model of the Solar System

Sun is at center of solar system. Only Moon orbits around Earth; planets orbit around Sun.

*Nicholas Copernicus revived this theory;

De revolutionibus

This figure shows retrograde motion of Mars.
Discovery 2-1: The Foundations of the Copernican Revolution

1. Earth is not at the center of everything.
2. Center of Earth is the center of Moon’s orbit.
3. All planets revolve around the Sun.
4. The stars are very much farther away than the Sun.
5. The apparent movement of the stars around the Earth is due to the Earth’s rotation.
6. The apparent movement of the Sun around the Earth is due to the Earth’s rotation.
7. Retrograde motion of planets is due to Earth’s motion around the Sun.
2.4 The Birth of Modern Astronomy

Telescope invented around 1600

Galileo built his own, made observations:

- Moon has mountains and valleys
- Sun has sunspots, and rotates
- Jupiter has moons (shown)
 - Io, Ganymede, Callisto, Europa
- Venus has phases
2.4 The Birth of Modern Astronomy

Phases of Venus cannot be explained by geocentric model.
Kepler’s laws were derived using observations made by Tycho Brahe
2.5 The Laws of Planetary Motion

1. Planetary orbits are ellipses, Sun at one focus
2.5 The Laws of Planetary Motion

2. Imaginary line connecting Sun and planet sweeps out equal areas in equal times
3. Square of period of planet’s orbital motion is proportional to cube of semimajor axis.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Orbital Semimajor Axis, a (AU)</th>
<th>Orbital Period, P (years)</th>
<th>Orbital Eccentricity, e</th>
<th>P^2/a^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.387</td>
<td>0.241</td>
<td>0.206</td>
<td>1.002</td>
</tr>
<tr>
<td>Venus</td>
<td>0.723</td>
<td>0.615</td>
<td>0.007</td>
<td>1.001</td>
</tr>
<tr>
<td>Earth</td>
<td>1.000</td>
<td>1.000</td>
<td>0.017</td>
<td>1.000</td>
</tr>
<tr>
<td>Mars</td>
<td>1.524</td>
<td>1.881</td>
<td>0.093</td>
<td>1.000</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5.203</td>
<td>11.86</td>
<td>0.048</td>
<td>0.999</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.537</td>
<td>29.42</td>
<td>0.054</td>
<td>0.998</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.19</td>
<td>83.75</td>
<td>0.047</td>
<td>0.993</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.07</td>
<td>163.7</td>
<td>0.009</td>
<td>0.986</td>
</tr>
</tbody>
</table>
More Precisely 2-1: Some Properties of Planetary Orbits

Semimajor axis and eccentricity of orbit completely describe it

Perihelion: closest approach to Sun

Aphelion: farthest distance from Sun
2.6 The Dimensions of the Solar System

Astronomical unit: mean distance from Earth to Sun (~ 150,000,000 km)
First measured during transits of Mercury and Venus, using triangulation
2.6 The Dimensions of the Solar System

Now measured using radar:

Ratio of mean radius of Venus’s orbit to that of Earth is very well known.
Newton’s Laws

Mass - total amount of matter: doesn’t ever change

Weight - gravitational force by Earth (or other planetary body may be standing on); changes depending on where you are
Newton’s laws of motion explain how objects interact with the world and with each other.
2.7 Newton’s Laws

Newton’s first law:

An object at rest will remain at rest, and an object moving in a straight line at constant speed will not change its motion, unless an external force acts on it.

“An object in motion stays in motion, an object at rest stays at rest, unless acted on by external force”
2.7 Newton’s Laws

Newton’s second law:

When a force is exerted on an object, its acceleration is inversely proportional to its mass:

\[a = \frac{F}{m} \text{ or } F = ma \]

Newton’s third law:

When object A exerts a force on object B, object B exerts an equal and opposite force on object A.

“Every action has an equal and opposite reaction”
On the Earth’s surface, acceleration of gravity is approximately constant, and directed toward the center of Earth.
For two massive objects, gravitational force is proportional to the product of their masses divided by the square of the distance between them.
2.7 Newton’s Laws

Gravity

\[F = \frac{G m_1 m_2}{r^2} \]

The constant \(G \) is called the gravitational constant; it is measured experimentally and found to be

\[G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2 \]
Newton’s Laws

The gravitational pull of the Sun keeps the planets moving in their orbits.
Newton’s Laws

Massive objects actually orbit around their common center of mass

Equal masses - close to center

Unequal masses - closer to more massive object
Kepler’s laws are a consequence of Newton’s laws; first law needs to be modified: The orbit of a planet around the Sun is an ellipse, with the center of mass of the planet–Sun system at one focus.
Newtonian mechanics tells us that the force keeping the planets in orbit around the Sun is the gravitational force due to the masses of the planet and Sun.

This allows us to calculate the mass of the Sun, knowing the orbit of the Earth:

\[M = \frac{rv^2}{G} \]

The result is \(M = 2.0 \times 10^{30} \) kg (!)
2.8 Newtonian Mechanics

Escape speed: the speed necessary for a projectile to completely escape a planet’s gravitational field. With a lesser speed, the projectile either returns to the planet or stays in orbit.
Summary of Chapter 2

• First models of solar system were geocentric but couldn’t easily explain retrograde motion

• Heliocentric model does; also explains brightness variations

• Galileo’s observations supported heliocentric model

• Kepler found three empirical laws of planetary motion from observations
Summary of Chapter 2 (cont.)

• Laws of Newtonian mechanics explained
 Kepler’s observations

• Gravitational force between two masses is
 proportional to the product of the masses,
 divided by the square of the distance
 between them