GEOMETRIC PROOFS

1) I can define, identify and illustrate the following terms:

<table>
<thead>
<tr>
<th>Conjecture</th>
<th>Conclusion</th>
<th>Theorem</th>
<th>Negation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductive</td>
<td>Proof</td>
<td>Prove</td>
<td>Counterexample</td>
</tr>
<tr>
<td>Deductive</td>
<td>Postulate</td>
<td>Given</td>
<td></td>
</tr>
</tbody>
</table>

Dates, assignments, and quizzes subject to change without advance notice.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>3/4</th>
<th>Block Day</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Assumptions & Justifications; Making Conclusions</td>
<td>Fill in the Blank and Plan Proofs</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10/11</td>
<td>Practice Quiz Review</td>
<td>12</td>
</tr>
</tbody>
</table>

Wednesday, 10/3 and Thursday, 10/4

<table>
<thead>
<tr>
<th>Assumptions and Justifications</th>
<th>Making conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can make correct assumptions from a picture, words, or statement.</td>
<td></td>
</tr>
<tr>
<td>I can justify a conclusion with a definition, theorem, or postulate.</td>
<td></td>
</tr>
<tr>
<td>I can make and justify the next logical conclusion from a given statement.</td>
<td></td>
</tr>
</tbody>
</table>

ASSIGNMENT: Assumptions, Justifications, and Conclusions Worksheet, pg. 113-114 (4, 7, 8)
Completed:

Friday, 10/5

<table>
<thead>
<tr>
<th>Fill in the Blank and Plan Proofs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can write a two column proof given a plan.</td>
</tr>
</tbody>
</table>

ASSIGNMENT: : pg. 113-114 (4, 7, 8) and Proofs Worksheet #1
Completed:

Tuesday, 10/9

<table>
<thead>
<tr>
<th>Writing Proofs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can write a two column proof.</td>
</tr>
</tbody>
</table>

ASSIGNMENT: Proofs Worksheet #2
Completed:

Wednesday, 10/10 and Thursday, 10/11

<table>
<thead>
<tr>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>*I can review for the test in class.</td>
</tr>
</tbody>
</table>

ASSIGNMENT: Review WS
Completed:

Friday, 10/12

<table>
<thead>
<tr>
<th>Test 3 – Logic and Proofs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I can demonstrate knowledge skills, and reasoning ability of ALL previously learned material.</td>
</tr>
</tbody>
</table>

ASSIGNMENT: Test #3
Grade:
Assumptions and Justifications

Use page 73 in your book to help complete the notes below…

Things You Can Assume From a Diagram Things You CAN’T Assume From a Diagram

I. For each picture list the facts you can assume from it.

II. Based on the picture alone, determine if each statement is true or false.

1. $\overline{ET} \parallel \overline{SR}$
2. $\angle MES$ is a right angle.
3. T is between E and H.
4. M, O, S, and H are coplanar.
5. $\overline{MO} \cong \overline{OE}$
6. $\angle OET \cong \angle TES$
7. O and R are collinear.
8. $\angle MTH$ is a right angle.

1. $\angle AEB$ is an acute angle.
2. $\overline{AE} \parallel \overline{BC}$
3. $\overline{AB} \perp \overline{BC}$
4. $AB < AE$
5. $m\angle ECB = 90^\circ$
6. $\angle BCE$ and $\angle ECB$ are supplementary.
7. $\angle AEB$ and $\angle BEC$ are complementary.
8. C is the midpoint of \overline{BD}.
9. $\angle BCE$ and $\angle ECD$ are a linear pair.
10. $\angle ABE$ and $\angle EBC$ are complementary.
III. For each statement and its next logical conclusion, tell which definition, postulate, or theorem gives the justification.

1. Given: $AM \cong WU$
 Conclusion: $AM = WU$
 Why: _________________________________

2. Given: E is the midpoint of BD
 Conclusion: $BE \cong ED$
 Why: _________________________________

3. Given: A bisects CT
 Conclusion: $CA \cong AT$
 Why: _________________________________

4. Given: $CO = OL$
 Conclusion: $CO \cong OL$
 Why: _________________________________

5. Given: $\angle DAY$ and $\angle YAK$ are a linear pair.
 Conclusion: $\angle DAY$ & $\angle YAK$ are supplementary
 Why: _________________________________

6. Given: $\angle TOM$ is the supplement of $\angle SUE$
 Conclusion: $m\angle TOM + m\angle SUE = 180^\circ$
 Why: _________________________________

7. Given: A and B lie in Plane JOG
 Conclusion: A and B are collinear
 Why: _________________________________

8. Given: A is in the interior of $\angle GLD$
 Conclusion: $m\angle GLA + m\angle ALD = m\angle GLD$
 Why: _________________________________

9. Given: $\angle 1$ is the complement to $\angle 3$
 Conclusion: $m\angle 1 + m\angle 3 = 90^\circ$
 Why: _________________________________

10. Given: $\angle HAM$ is vertical to $\angle EAT$
 Conclusion: $\angle HAM \cong \angle EAT$
 Why: _________________________________

11. Given:
 Conclusion: U is the midpoint of RN
 Why: _________________________________

12. Given:
 Conclusion: $\angle 8$ and $\angle 9$ are vertical
 Why: _________________________________

13. Given: $m\angle NAT + m\angle WED = 90^\circ$
 Conclusion: $\angle NAT$ & $\angle WED$ are complementary
 Why: _________________________________

14. Given: $FA \cong RM$
 Conclusion: $FA = RM$
 Why: _________________________________

15. Given: $MA = TH$
 Conclusion: $MA \cong TH$
 Why: _________________________________

16. Given: $m\angle AFD + m\angle BAT = 180^\circ$
 Conclusion: $\angle AFD$ & $\angle BAT$ are supplementary
 Why: _________________________________

17. Given:
 Conclusion: $\angle FRO \cong \angle ORG$
 Why: _________________________________

18. Given: $m\angle 2 = m\angle 6$
 Conclusion: $\angle 2 \cong \angle 6$
 Why: _________________________________
Making Conclusions

1. Given: $\overline{TO} \cong \overline{AN}$
 Conclusion: __________________________
 Justification: _______________________

2. Given: E is the midpoint of \overline{BD}
 Conclusion: __________________________
 Justification: _______________________

3. Given: A bisects \overline{CT}
 Conclusion: __________________________
 Justification: _______________________

4. Given: CO = OL
 Conclusion: __________________________
 Justification: _______________________

5. Given: $\angle DAY$ and $\angle YAK$ are a linear pair
 Conclusion: __________________________
 Justification: _______________________

6. Given: $\angle TOM$ is the supplement of $\angle SUE$
 Conclusion: __________________________
 Justification: _______________________

7. Given:
 Conclusion: __________________________
 Justification: _______________________

8. Given:
 Conclusion: __________________________
 Justification: _______________________

9. Given:
 Conclusion: __________________________
 Justification: _______________________

10. Given:
 Conclusion: __________________________
 Justification: _______________________

11. Given: $m\angle ABC = m\angle HIJ$
 Conclusion: __________________________
 Justification: _______________________

12. Given: $\angle CAT$ and $\angle RAP$ are vertical angles.
 Conclusion: __________________________
 Justification: _______________________

13. Given: $\angle SAT \cong \angle ACT$
 Conclusion: __________________________
 Justification: _______________________

14. Given: A is in the interior of $\angle GLD$
 Conclusion: __________________________
 Justification: _______________________
15. Given: \(FA \cong RM \)
 Conclusion: __________________________
 Justification: __________________________

16. Given: \(\angle HAM \) is vertical to \(\angle EAT \)
 Conclusion: __________________________
 Justification: __________________________

17. Given: __________________________
 Conclusion: __________________________
 Justification: __________________________

18. Given: __________________________
 Conclusion: __________________________
 Justification: __________________________

19. Given: \(m\angle NAT + m\angle WED = 90^\circ \)
 Conclusion: __________________________
 Justification: __________________________

20. Given: \(\overline{UB} \) bisects \(\angle RUY \)
 Conclusion: __________________________
 Justification: __________________________

21. Given: __________________________
 Conclusion: __________________________
 Justification: __________________________

22. Given: __________________________
 Conclusion: __________________________
 Justification: __________________________

23. Given: \(\angle PAI \) and \(\angle IAR \) are a linear pair
 Conclusion: __________________________
 Justification: __________________________

24. Given: \(\angle CAT \) and \(\angle RAP \) are complementary angles.
 Conclusion: __________________________
 Justification: __________________________

25. Given: \(m\angle NAT + m\angle WED = 180^\circ \)
 Conclusion: __________________________
 Justification: __________________________

26. Given: A is between J and M
 Conclusion: __________________________
 Justification: __________________________

“Making Conclusions” Worksheet continues on the next page…
For #27 and 28, a two column proof is given but steps are missing. Fill in the missing steps and rewrite the whole proof correctly.

27. Given: \(\angle 1 \) is supplementary to \(\angle 2 \), \(\angle 3 \) is supplementary to \(\angle 4 \), and \(\angle 2 \equiv \angle 4 \)
Prove: \(\angle 1 \equiv \angle 3 \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1 & \angle 2) are supp. (\angle 3 & \angle 4) are supp.</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m\angle 1 + m\angle 2 = 180^\circ) (\angle 3 + \angle 4 = 180^\circ)</td>
<td>Def. of Supplement.</td>
</tr>
<tr>
<td>3. (m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4)</td>
<td>Transitive Prop.</td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. (m\angle 1 + m\angle 4 = m\angle 3 + m\angle 4)</td>
<td>Substitution prop, Steps ___ and ___</td>
</tr>
<tr>
<td>7. (m\angle 1 \equiv m\angle 3)</td>
<td>Subtraction prop.</td>
</tr>
<tr>
<td>8. (\angle 1 \equiv \angle 3)</td>
<td>Def. of (\equiv)</td>
</tr>
</tbody>
</table>

28. Given: \(\angle 5 \) is complementary to \(\angle 7 \)
Prove: \(\overline{MI} \perp \overline{IE} \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 5 & \angle 7) are comp.</td>
<td>Given</td>
</tr>
<tr>
<td>2. (m\angle 5 + m\angle 7 = 90^\circ)</td>
<td>Def. of complement.</td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4. (m\angle MIE = 90^\circ)</td>
<td>Substitution, steps ___ and ___</td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
<tr>
<td>6. (\overline{MI} \perp \overline{IE})</td>
<td>Definition of perpendicular</td>
</tr>
</tbody>
</table>
4. Fill in the blanks to complete the two-column proof.
 Given: \(\angle 2 \cong \angle 3 \)
 Prove: \(\angle 1 \) and \(\angle 3 \) are supplementary.
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 2 \cong \angle 3)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m\angle 2 = m\angle 3)</td>
<td>2. a. ____?</td>
</tr>
<tr>
<td>4. (m\angle 1 + m\angle 2 = 180^\circ)</td>
<td>4. Def. of supp. (\Delta)</td>
</tr>
</tbody>
</table>
 | 5. \(m\angle 1 + m\angle 3 = 180^\circ \) | 5. c. ____?
 | 6. d. ____? | 6. Def. of supp. \(\Delta \). |

Fill in the blanks to complete each two-column proof.

7. Given: \(\angle 1 \) and \(\angle 2 \) are supplementary, and \(\angle 3 \) and \(\angle 4 \) are supplementary. \(\angle 2 \cong \angle 3 \)
 Prove: \(\angle 1 \cong \angle 4 \)
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle 1) and (\angle 2) are supplementary. (\angle 3) and (\angle 4) are supplementary.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. a. ____?</td>
<td>2. Def. of supp. (\Delta)</td>
</tr>
<tr>
<td>3. (m\angle 1 + m\angle 2 = m\angle 3 + m\angle 4)</td>
<td>3. b. ____?</td>
</tr>
<tr>
<td>4. (\angle 2 \cong \angle 3)</td>
<td>4. Given</td>
</tr>
<tr>
<td>5. (m\angle 2 = m\angle 3)</td>
<td>5. Def. of (\cong \Delta)</td>
</tr>
</tbody>
</table>
 | 6. c. ____? | 6. Subtr. Prop. of \(= \)
 | 7. \(\angle 1 \cong \angle 4 \) | 7. d. ____? |

8. Given: \(\angle BAC \) is a right angle. \(\angle 2 \cong \angle 3 \)
 Prove: \(\angle 1 \) and \(\angle 3 \) are complementary.
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle BAC) is a right angle.</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (m\angle BAC = 90^\circ)</td>
<td>2. a. ____?</td>
</tr>
<tr>
<td>3. b. ____?</td>
<td>3. (\angle) Add. Post.</td>
</tr>
<tr>
<td>4. (m\angle 1 + m\angle 2 = 90^\circ)</td>
<td>4. Subst. (\text{Steps 2, 3})</td>
</tr>
<tr>
<td>5. (\angle 2 \cong \angle 3)</td>
<td>5. Given</td>
</tr>
<tr>
<td>6. c. ____?</td>
<td>6. Def. of (\cong \Delta)</td>
</tr>
</tbody>
</table>
 | 7. \(m\angle 1 + m\angle 3 = 90^\circ \) | 7. d. ____?
 | 8. e. ____? | 8. Def. of comp. \(\Delta \) |
Proofs Worksheet #1

On a separate paper, write a two-column proof for each problem 1-5. Follow the plan provided for help.

1. Given: \(\overline{RT} \cong \overline{SU} \)
 Prove: \(RS = TU \)

 Plan: Use the definition of congruent segments to write the given information in terms of lengths. Next use the Segment Addition Postulate to write \(RT \) in terms of \(RS + ST \) and \(SU \) as \(ST + TU \). Substitute those into the given information and use the Subtraction Property of Equality to eliminate \(ST \) and leave \(RS = TU \).

2. Given: \(\angle 5 = 47^\circ \)
 Prove: \(\angle 6 = 133^\circ \)

 Plan: Use the Linear Pair Theorem to show that \(\angle 5 \) and \(\angle 6 \) are supplementary. Then use the definition of supplementary angles to show that their measures add up to \(180^\circ \). Finally use substitution and then subtraction to arrive at the “Prove” statement.

3. Given: \(AB = BC \)
 \(BC = BD \)
 Prove: B is the midpoint of \(\overline{AD} \)

 Plan: Write the “Given” information and use the transitive property to show that \(AB = BD \). Then use the definition of congruence to show that the segments are congruent and the definition of midpoint to finish the proof.

4. Given: \(\ell \) bisects \(\overline{MN} \) at \(P \)
 Prove: \(MP = PN \)

 Plan: Use the definition of bisect to show the two smaller segments are congruent. Then use the definition of congruence to show that their lengths are equal.

5. Given: \(\angle 1 \) and \(\angle 2 \) are supplementary;
 \(\angle 1 \equiv \angle 3 \)
 Prove: \(\angle 3 \) and \(\angle 2 \) are supplementary

 Plan: Use the definition of supplementary angles and congruent angles to write the given information in terms of angle measures. Next use substitution to show that \(m\angle 3 + m\angle 2 = 180^\circ \). Then use the definition of supplementary angles for the conclusion.
1. Given: O is the midpoint of MN
 OM = OW
 Prove: OW = ON

2. Given: AB = CD
 Prove: AC = BD

3. Given: $m\angle 1 = 90^\circ$
 Prove: $m\angle 2 = 90^\circ$

4. Given: $\angle 1$ and $\angle 2$ are complementary
 $\angle 3$ and $\angle 2$ are complementary
 Prove: $m\angle 1 = m\angle 3$

5. Given: $m\angle 1 = m\angle 3$
 Prove: $m\angle JOL = m\angle KOM$

6. Given: $m\angle 1 = 90^\circ$
 Prove: $m\angle 2 + 90 = 180$

7. Given: $PR \cong LN$
 Q is the midpoint of PR
 M is the midpoint of LN
 Prove: PQ = LM

8. Given: $EF \perp EG$
 D is in the interior of $\angle FEG$
 Prove: $\angle FED$ and $\angle DEG$ are complementary

9. Given: $AB \cong CD$
 Prove: $AC \cong BD$

10. Given: $\angle 1$ and $\angle 2$ are supplementary
 $\angle 1 \cong \angle 2$
 Prove: $\angle 1$ and $\angle 2$ are right angles

11. Given: $\angle 1 \cong \angle 2$
 Prove: $\angle 1$ and $\angle 2$ are right angles

12. Given: $\angle 1$ and $\angle 2$ are complementary
 Prove: $\angle 2$ and $\angle 3$ are complementary
13.

Given: \(m\angle 2 = 2(m\angle 1) \)
Prove: \(m\angle 1 = 60^\circ \)

14.

Given: \(\overline{AD} \) bisects \(\angle BAC \)
\(\angle 1 \equiv \angle 3 \)
Prove: \(\angle 2 \equiv \angle 3 \)

15.

Given: \(\angle ABC \) is a right angle
Prove: \(\angle 1 \) and \(\angle 2 \) are complementary

16.

Given: \(\overline{CD} \equiv \overline{EF} \)
\(\overline{CD} \equiv \overline{FG} \)
Prove: \(F \) is the midpoint of \(\overline{EG} \)

17.

Given: \(KU = HF \)
Prove: \(\overline{KH} \equiv \overline{UF} \)

18.

Given: \(\angle ABD \) and \(\angle CDB \) are right angles
\(m\angle 2 = m\angle 4 \)
Prove: \(m\angle 1 = m\angle 3 \)

19.

Given: \(m\angle ABC = m\angle CBD \)
Prove: \(\overline{BC} \) is the angle bisector of \(\angle ABD \)

20.

Given: \(m\angle ABE = m\angle CBE \)
Prove: \(\angle ABD \) and \(\angle DBE \) are complementary